
CC4CS: A Unifying Statement-Level Performance

Metric for HW/SW Technologies
V. Stoico1, V. Muttillo1, G. Valente1, L. Pomante1, F. D’Antonio2

1Università Degli Studi Dell’Aquila - Center of Excellence DEWS, L’Aquila, Italy

{vincenzo.stoico}@student.univaq.it, {vittoriano.muttillo, giacomo.valente}@graduate.univaq.it, {luigi.pomante}@univaq.it
2Thales Alenia Space, Via Campo di Pile, L’Aquila, Italy, {fausto.dantonio-somministrato}@thalesaleniaspace.com

I. INTRODUCTION

In the last thirty years there has been an exponential
increase of the spread and evolution of information technology.
In this respect, it is certainly underlined the spiraling of
embedded systems. The presence of such systems in everyday
life is constant and often almost invisible. Moreover, the
adopted design methodology is of critical importance during
the development of an embedded system. Unfortunately, such
methodologies usually lack generality and can be very effort
and time consuming, especially when working at a low level of
abstraction. For this reason, working on a higher abstraction
levels (i.e. system-level) is needed and early performance
estimation is a fundamental step. One of the most common
metric for computer performance analysis is MIPS (Million
Instructions Per Second) [2] because it is normally available
directly on data-sheet. MIPS metrics measures millions of
assembly instructions executed per second, and it can be useful
for comparing two processors with the same ISA (Instruction
Set Architecture) but it is pointless in comparing ones with
different micro-architectures.

In such a context, the objective of this work is to analyze
the usefulness of a metric related to C programming language
statements. This kind of metric, called CC4CS (Clock Cycles
for C Statement), is defined as the ratio between the number of
clock cycles required by the target processor to run an
application and the number of executed C statements.

For this purpose, a framework that helps to calculate this
kind of metric for a given program has been realized.
Additionally, such a framework is also able to automatically
generate large amounts of constrained random inputs and to
evaluate statistics on the metric. By analyzing the data, it is
possible to validate the metric with respect to the performance
of a target processor. Summarizing, such a framework allows
to easily evaluate CC4CS in a repeatable manner. The working
process has been defined by looking at the CC4CS definition.
The framework exploits an Instruction Set Simulator (ISS) and
the simulation permits to calculate the number of clock cycle
needed to execute the program while the number of executed C
statements is obtained performing a profiling on the host
architecture.

II. STATE OF THE ART

In order to evaluate the number of clock cycles required by
the target microprocessor to run an application, several
methods and tools are available in literature. A first approach is
a direct timing measurement on real microprocessor through an
external HW/SW profiling system (e.g. Rapitime [1]).

Another method that can be used is a target microprocessor
simulation. The simulation can be both hardware and software.

The hardware simulation can be realized by usage HDL tools
(e.g. both Intel Altera and Xilinx company offers an integrated
environment with their software suite). Software simulation
can be done with target processor models that execute a cross-
compiled binary on the host. This procedure can be
implemented through ISSs or microprocessor virtualization.

With respect to the approaches previously listed, this work
focuses on the realization of a framework that executes specific
benchmarks on different ISS technologies in order to provide a
metric (CC4CS) able to help designers to early estimate the
performance of a software application on different target
processors.

III. FRAMEWORK IMPLEMENTATION

To validate the evaluation process and the metric, the
framework has been tested on an Intel 8051 (core) and 3 main
phases of the working process have been applied.

Inputs Generation: it is based on a module that
automatically generates constrained random inputs for a given
benchmark function. The module needs to know which kind of
parameters the function requires. For this purpose, the
programmer defines the prototype of the implemented function.
The prototype contains the function name and the name and
type of each parameter. The input generator parses the
prototype file to find its name and to find out proper data for
the function. For each parameter, the user is asked to insert a
range for meaningful values (min and max) and then the
number of values to be randomly generated. In case of a
function that requires more than one variable, the Cartesian
product of generated values is provided. For each produced
combination a header file is created that contains the values of
a single combination. At the end, the input generator creates
the directory that contains all the header files.

Profiling on the host architecture: it is based on a
procedure that counts the number of C statements executed.
This value is obtained performing a profiling of the program.
To have this task done, the GCov [4] profiler has been used.
First of all, the program is compiled using GCC [5] and -
fprofile-arcs and -ftest-coverage compilation flags. These flags
tell the compiler to generate additional information needed by
GCov to make a correct profiling. The first flag allows the
generation of a .gcda file that contains additional information
for each branch of the program while the second one adds
information to count the number of times a statement has been
executed. Then, the compilation process triggers the creation of
a .gcno file and generates also the corresponding .gcda file. To
complete the task, the gcov command is executed. To obtain
the number of C statements executed, a sum of the single
timing numbers is then performed.

Execution and metric evaluation on target processor: it
is based on a procedure that calculates the number of clock
cycles used by the target processor to execute the
input/function pairs. The execution has been done with a
software simulation of the processor by using an Instruction
Set Simulator (ISS). In this work the core of the 8051
microcontroller has been considered as target platform. The
Intel 8051 microcontroller [7] is built around an 8-bit CPU.
The adopted memory model is the Harvard one, i.e. the core
accesses to data and instructions by using two memories and
two buses. Indeed, 8051 presents a PROM non-volatile
memory which contains program instruction and a RAM
memory for data, furthermore it presents an 8-bit Data Bus and
a 16-bit Address Bus. I8051 registers are 8-bit registers. ALU
works with 8-bit words and is provided with an accumulator
register and communicates with four I/O 8-bit ports. The
University of California has developed a project centered on
8051 microprocessor, which provides a number of tools useful
for simulating C code on Intel 8051 microprocessor. The
project name is Dalton and it has been developed by the Dept.
of computer Science of the University of California [3]. The
Dalton Instruction Set Simulator (ISS) allows a user to
simulate programs written for the 8051 and provides statistics
on instructions executed, instructions executed per second,
execution cycles required by the 8051, and average instructions
per second for an 8051 executing the same program. For these
characteristics, it has been chosen as the reference ISS for the
evaluation of the CC4CS for 8051 microprocessor. The
functions composing a benchmark have been compiled, with
the SDCC (Small Device C Compiler) [6] compiler. SDCC is
free open source C compiler suite designed for 8 bit processors.
The entire source code for the compiler is distributed under
GPL and has extensive language extensions suitable for
utilizing various microcontrollers and underlying hardware.

The Dalton ISS needs a .hex to perform the simulation.
This kind of file is generated by SDCC. To do a proper
simulation, during the compilation two options were specified:
--mmcs51 and --iram-size 128. The first one refers to the
family of the microprocessor while the second to the dimension
of the internal ram. The compilation generates an .ihx file that
is to .hex file using the packihx command. At the end, the ISS
is executed. It generates a file that contains information about
the simulation. After the simulation, the framework is ready to
evaluate the metric and some statistics on the base of all the
inputs generated for the different functions. These calculations
are made with a program that returns two files containing
metric values, for each input, and statistics on the sample.

IV. CC4CS ESTIMATION AND ANALYSIS

To validate the CC4CS metric some preliminary tests has
been executed. A benchmark composed by 10 algorithms has
been used. Some preliminary results are shown in Table 1. The
metric has been evaluated with respect to 10.000 input files per
function. For each single function, different data types have
been considered (int8, int16, int32, and float) because the
performance of each software changes with respect to the
dimension of data since the microcontroller is based on a 8-bit
CISC CPU core with a 8-bit ALU. Furthermore, with float data
type the values of CC4CS are increasing with respect to the

other values due to the lack of an FPU and to the HW
architecture registers size.

TABLE I. CC4CS MEASURED USING 10.000 INPUT DATA SET

PER FUNCTION (100.000 EXECUTION)

Method Min AMa SDb 90c 95d Max

Int8 58 117,8 47,4 170 176 410

Int16 80 161,4 67,5 265 297 453

Int32 104 227,9 88,7 354 400 760

Float 4 537,7 267,6 969 1173 1301

a. AM: Arithmetic Mean, bSD: Standard Deviation, c90: 90th percentile, d95: 95th percentile

V. CONCLUSION AND FUTURE WORK

In this work a new metric called CC4CS has been
presented. A framework that allows to measure and estimate
this metric has been implemented and tested on a benchmark
composed of some representative functions (e.g. Bellman Ford,
Banker’s Algorithm, Matrix Multiplication etc.). The 8051
microcontroller HW architecture has been selected as reference
and used to validate the framework environment and to
evaluate the CC4CS metric. Future works involve the use of
different ISSs to evaluate CC4CS on more processors (ARM,
LEON, NIOS II etc.). Then, some other analysis and
considerations related to the HW characteristics (registers and
memory size, register binding, cache and pipeline
interferences, ISA architecture etc.) of the processors will be
done to improve accuracy of the metric. Finally, it is worth
noting that, since this work avoids reasoning about assembly
code related to C statements (i.e. it is based only on C code
profiling and target execution time), it will be extended to
evaluate CC4CS also for C functions directly implemented in
HW by means of High Level Synthesis techniques. In other
words, CC4CS will be used as an early unifying statement-
sevel performance metric for HW/SW co-design
methodologies (in particular to support system-level timing
HW/SW co-simulations).

ACKNOWLEDGMENTS

This work has been partially supported by the ECSEL RIA
2016 MegaM@Rt2 and AQUAS projects.

REFERENCES

[1] RapiTime, Automated performance measurement on-target timing
analysis tool, https://www.rapitasystems.com/products/rapitime,
Accessed 26 April 2017.

[2] D.J. Lilja, Measuring Computer Performance, A Practitioner’s Guide,
Cambridge University Press, New York, USA, 2000.

[3] Dalton Project: 8051 microcontroller, University of California,
http://www.ann.ece.ufl.edu/i8051/, Accessed 26 April 2017.

[4] GCov Profiler, https://gcc.gnu.org/onlinedocs/gcc/Gcov.html, Accessed
26 April 2017.

[5] GCC GNU Compiler Collection, https://gcc.gnu.org/onlinedocs/gcc,
Accessed 26 April 2017.

[6] SDCC, http://sdcc.sourceforge.net/doc/sdccman.pdf, Accessed 26 April
2017.

[7] M. A. Mazidi, J. G. Mazidi, R. D. McKinlay The 8051 Microcontroller
and Embedded Systems, 2nd Edition, Prentice Hall, 2005.

